Long-Time Asymptotics for the Korteweg–de Vries Equation via Nonlinear Steepest Descent
نویسندگان
چکیده
We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Korteweg–de Vries equation for decaying initial data in the soliton and similarity region. This paper can be viewed as an expository introduction to this method.
منابع مشابه
A Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملThe tanh method for solutions of the nonlinear modied Korteweg de Vries equation
In this paper, we have studied on the solutions of modied KdV equation andalso on the stability of them. We use the tanh method for this investigationand given solutions are good-behavior. The solution is shock wave and can beused in the physical investigations
متن کاملForced oscillations of a damped Korteweg-de Vries equation on a periodic domain
In this paper, we investigate a damped Korteweg-de Vries equation with forcing on a periodic domain $mathbb{T}=mathbb{R}/(2pimathbb{Z})$. We can obtain that if the forcing is periodic with small amplitude, then the solution becomes eventually time-periodic.
متن کاملAn extension of the steepest descent method for Riemann-Hilbert problems: the small dispersion limit of the Korteweg-de Vries (KdV) equation.
This paper extends the steepest descent method for Riemann-Hilbert problems introduced by Deift and Zhou in a critical new way. We present, in particular, an algorithm, to obtain the support of the Riemann-Hilbert problem for leading asymptotics. Applying this extended method to small dispersion KdV (Korteweg-de Vries) equation, we (i) recover the variational formulation of P. D. Lax and C. D. ...
متن کاملNumerical inverse scattering for the Korteweg–de Vries and modified Korteweg–de Vries equations
Recent advances in the numerical solution of Riemann–Hilbert problems allow for the implementation of a Cauchy initial value problem solver for the Korteweg–de Vries equation (KdV) and the defocusing modified Korteweg–de Vries equation (mKdV), without any boundary approximation. Borrowing ideas from the method of nonlinear steepest descent, this method is demonstrated to be asymptotically accur...
متن کامل